Robust moving object segmentation on H.264/AVC compressed video using the block-based MRF model

نویسندگان

  • Wei Zeng
  • Jun Du
  • Wen Gao
  • Qingming Huang
چکیده

Moving object segmentation in compressed domain plays an important role in many real-time applications, e.g. video indexing, video transcoding, video surveillance, etc. Because H.264/AVC is the up-to-date video-coding standard, few literatures have been reported in the area of video analysis on H.264/AVC compressed video. Compared with the former MPEG standard, H.264/AVC employs several new coding tools and provides a different video format. As a consequence, moving object segmentation on H.264/ AVC compressed video is a new task and challenging work. In this paper, a robust approach to extract moving objects on H.264/ AVC compressed video is proposed. Our algorithm employs a block-based Markov Random Field (MRF) model to segment moving objects from the sparse motion vector field obtained directly from the bitstream. In the proposed method, object tracking is integrated in the uniform MRF model and exploits the object temporal consistency simultaneously. Experiments show that our approach provides the remarkable performance and can extract moving objects efficiently and robustly. The prominent applications of the proposed algorithm are object-based transcoding, fast moving object detection, video analysis on compressed video, etc. r 2005 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Video Abstraction in H.264/AVC Compressed Domain

Video abstraction allows searching, browsing and evaluating videos only by accessing the useful contents. Most of the studies are using pixel domain, which requires the decoding process and needs more time and process consuming than compressed domain video abstraction. In this paper, we present a new video abstraction method in H.264/AVC compressed domain, AVAIF. The method is based on the norm...

متن کامل

Real-Time Segmentation of Moving Objects in H.264 Compressed Domain with Dynamic Design of Fuzzy Sets

This paper presents a real-time segmentation algorithm to obtain moving objects from the H.264 compressed domain. The proposed segmentation works with very little information and is based on two features of the H.264 compressed video: motion vectors associated to the macroblocks and decision modes. The algorithm uses fuzzy logic and allows to describe position, velocity and size of the detected...

متن کامل

An Approach to Trajectory Estimation of Moving Objects in the H.264 Compressed Domain

This paper presents a simple and fast method for unsupervised trajectory estimation of multiple moving objects within a video scene. It is entirely based on the motion vectors that are present in compressed H.264/AVC or SVC video streams. We extract these motion vectors, perform robust frame-wise global motion estimation and use these estimates to form outlier masks. Motion segmentation on the ...

متن کامل

Real Time Moving Object Detection and Tracking in H264 Compressed Domain for Video Surveillance

A real-time moving object detection and tracking algorithm on H.264 compressed video streams for IP video surveillance systems. The goal is to develop algorithms which may be useful in a real-life industrial perspective by facilitating the processing of large numbers of video streams on a single server and to reduce the computational complexity and memory requirements by extraction information ...

متن کامل

Automatic Detection for Tracking Moving Objects in H.264 Video Sequences Using Multi-Features and Bi-Modal Gaussian Approximation

Automatic moving object detection is essential for various computer vision applications like video surveillance systems. Many previous moving object detection methods work for usually low-res video sequences under certain constraints. Either they perform detection process based on background learning and/or pixel-level motion analysis or they focus on detecting particular objects such as faces....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Real-Time Imaging

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2005